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Computation of a drastic flow pattern change in an annular swirling
jet caused by a small decrease in inlet swirl

M. Vanierschot∗,† and E. Van den Bulck

Mechanical Engineering Department, K. U. Leuven, Heverlee, Belgium

SUMMARY

This paper investigates the flow pattern change in an annular jet caused by a sudden change in the
level of inlet swirl. The jet geometry consists of an annular channel followed by a specially designed
stepped-conical nozzle, which allows the existence of four different flow patterns as a function of the inlet
swirl number. This paper reports on the transition between two of them, called the ‘open jet flow high
swirl’ and the ‘Coanda jet flow.’ It is shown that a small sudden decrease of 4% in inlet swirl results in
a drastic and irreversible change in flow pattern. The objective of this paper is to reveal the underlying
physical mechanisms in this transition by means of numerical simulations. The flow is simulated using the
unsteady Reynolds-averaged Navier–Stokes (URANS) approach for incompressible flow with a Reynolds
stress turbulence model. The analysis of the numerical results is based on a study of different forces on
a control volume, which consists of the jet boundaries. The analysis of these forces shows that the flow
pattern change consists of three different regimes: an immediate response regime, a quasi-static regime and
a Coanda regime. The simulation reveals that the pressure–tangential velocity coupling during the quasi-
static regime and the Coanda effect at the nozzle outlet during the Coanda regime are the driving forces
behind the flow pattern change. These physical mechanisms are validated with time-resolved stereo-PIV
measurements, which confirm the numerical simulations. Copyright q 2008 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Swirling flows are well established in many engineering processes. The characteristics of a swirling
flow field, such as regions of intense mixing, large recirculation zones and centrifugal forces, are
favorable in applications such as combustion, chemical processes and cyclone separators [1, 2].
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Figure 1. Schematic view of the stepped-conical nozzle.

Understanding the physical mechanisms of swirling flows is therefore crucial in controlling these
different applications. Previous studies of the authors have focussed on the ability to control
swirling flows. They showed that it was possible to generate four different cold flow patterns
within the same jet geometry by changing the level of inlet swirl [3]. The jet geometry consists of
an annular channel followed by a stepped-conical nozzle. Of great importance in this flow pattern
change is the specific geometry of the in-house designed nozzle [4], which is shown in Figure 1.
Swirling air enters the nozzle through an annular channel with outer diameter Do. The nozzle
consists of a sudden expansion step with height s, followed by a divergent with an opening angle
of 20o and length L . After the nozzle the jet enters the environment (free jet). The four observed
flow patterns are functions of the inlet swirl and are labelled as ‘closed jet flow’ (CJF), ‘open
jet flow low swirl’ (OJF-LS), ‘open jet flow high swirl’ (OJF-HS) and ‘Coanda jet flow’ (CoJF).
These four flow patterns are subject to hysteresis in a swirl cycle (an increase till maximum swirl,
starting from zero swirl, followed by a decrease till zero swirl). The level of swirl is represented
by the swirl number S as first proposed by Beér and Chigier [2], which is defined as the ratio of
the axial flux of tangential momentum to axial flux of axial momentum and outer radius,

S=
∫ Ro
Ri

2��UWr2 dr

Ro
∫ Ro
Ri

2��U 2r dr
(1)

where U and W are the axial and tangential velocities and Ri and Ro are the inner and outer
radii of the annular channel. The hysteresis in a swirl cycle was observed experimentally; also a
numerical study by Vanierschot and Van den Bulck [5] could predict the four different flow patterns
and their hysteretic behavior. Figure 2 shows a comparison between their numerical simulations
and experimental data in a swirl cycle. For the simulations, the Reynolds-averaged Navier–Stokes
(RANS) approach is used with two turbulence models: a k–� model and a Reynolds stress (RSTM)
model. In addition, the influence of the boundary conditions is tested (uniform axial velocity or
the experimentally measured velocity profile at the inlet (profile)). Starting at S=0, the first flow
pattern is the CJF. This flow pattern evolves to an OJF-LS at intermediate swirl levels. For higher
swirl number, the OJF-LS attaches to the nozzle and an OJF-HS is formed, which remains till
maximum swirl (S=0.9, in the present case). The transition from an OJF-LS to an OJF-HS is
irreversible (both experimental and numerical), since the OJF-HS will not revert back to an OJF-LS
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if the swirl is decreased to the value before the attachment. In the decrease in swirl, starting from
maximum swirl, the OJF-HS changes to a CoJF, which remains till zero swirl. Again this transition
is irreversible in both the experimental and numerical calculations: the CoJF will not revert back
to an OJF-HS if the swirl is increased to the value before the transition. Both turbulence models
predict the hysteresis and the four different flow patterns equally well.

The present computational study in this paper focusses on the transient flow pattern change
from the OJF-HS (flow pattern A in Figure 2) to the CoJF (flow pattern B) in the decrease of
swirl. The streamlines of both steady-state flow patterns are shown in Figure 3. The objective is
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Figure 2. Transition map of a swirl cycle (an increase till maximum swirl starting from zero swirl, followed
by a decrease till zero swirl). A indicates the flow pattern at the start and B indicates the flow pattern at

the end of the simulation in this study. The picture is taken from [5].
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Figure 3. Streamlines for the OJF-HS and CoJF (obtained by simulation). The solid lines represent jet
streamlines and the dashed lines represent recirculating and entrainment streamlines: flow patterns (a) A

(OJF-HS at S=0.58) and (b) B (CoJF at S=0.557) in Figure 2.
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to reveal the underlying physics that is responsible for this drastic and remarkable change in flow
pattern. The initial condition of the transient simulation is the steady-state solution of the OJF-HS
(flow pattern A). Then, the inlet velocity profiles are suddenly changed from S=0.58 to 0.557,
for which the CoJF occurs (flow pattern B). Therefore, the numerical study simulates the transient
response of the OJF-HS to a sudden decrease in the inlet swirl level. The computations end when
the steady-state CoJF is reached. In order to understand the physical mechanism responsible for
this important flow pattern transition, an alternative analysis is performed, where the equations
of motion are integrated along a control volume using the obtained numerical data. The control
volume is chosen in such a way that it consists of the jet boundaries. In this manner, it is possible
to study the dynamic behavior of the different forces that act on the jet. Time-resolved stereo-PIV
measurements are used to validate the simulations and to confirm the physical mechanisms behind
the transition.

2. NUMERICAL PROCEDURE

2.1. Governing equations

The governing equations that describe the swirling flow are the unsteady Reynolds-averaged
Navier–Stokes (URANS) equations in cylindrical coordinates. The geometry and the boundary
conditions are axisymmetric, giving �/��=0. Furthermore, the OJF-HS and CoJF have been
measured with a high temporal resolution. The analysis has shown that these flow fields are
stationary when the high-frequency turbulent fluctuations are time averaged [3]. No precession or
similar type of flow instabilities is present because the flow is stably attached to the nozzle, as
indicated in Figure 3(a). Since, during the transition, the flow field remains attached to the nozzle
at all times, it is a valid assumption that the turbulence-averaged flow remains axisymmetric during
the course of the transition. Therefore, the equations governing this type of flow for continuity
and momentum may be expressed as

�U
�x

+ 1

r

�rV
�r

=0 (2)

�

[
��

�t
+ �U�

�x
+ 1

r

�rV�

�r

]
= �

�x

(
�

��

�x

)
+ 1

r

�
�r

(
r�

��

�r

)
+S� (3)

where U,V and W are the mean axial, radial and tangential velocities and � stands for any of
the momentum components U,V and rW . The source term for the momentum equation S� is
defined as

SU =−�P
�x

− ��u2

�x
− 1

r

�r�uv

�r
(4)

SV =−�P
�r

+ �W 2

r
− �V

r2
− 1

r

�r�v2

�r
+ �w2

r
− ��uv

�x
(5)

SrW =−2�

r

�rW
�r

−r
��uw

�x
−r

��vw

�r
−2�vw (6)
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2.2. Turbulence closure

The only unknown values in Equations (4)–(6) are the Reynolds stresses u2,v2,w2,uv,uw and
vw. In order to solve Equation (3) they need to be known. In this study, closure is obtained by
solving transport equations for the Reynolds stresses [6, 7]. The equation for uiu j in cartesian
coordinates is given as

��uiu j

�t
+ �

�xk
(�Ukuiu j )− �

�xk

(
�

�uiu j

�xk

)
= Pi j − 2

3
��i j �+DT,i j +�i j (7)

The first term Pi j =−�(uiuk(�Uj/�xk)+u juk(�Ui/�xk)) is the production of the stress uiu j and
the second term, the dissipation rate �, is calculated by solving a transport equation. The last
two terms, DT,i j , the turbulent diffusion, and �i j , the pressure strain, need to be modelled. The
model for DT,i j is a simplified version of the gradient-diffusion model as proposed by Lien and
Leschziner [8]. The model used for �i j is the one proposed by Gibson and Launder [7].
2.3. Computational domain and boundary conditions

Figure 4 shows a schematic view of the geometry and the computational domain. Air enters the
computational domain through the inlet into an annular channel with an outer diameter Do=87mm
and an inner diameter Di = 0.65Do. The length of the channel Lc=3.5Do. At the end, an in-house
designed nozzle is placed, whose dimensions are very important for the existence of multiple flow
patterns. The nozzle consists of a stepwise expansion with a height of 0.15Do, followed by a
divergent with an axial length LD=0.44Do and an opening angle of 20◦. The nozzle is followed
by a sudden expansion into a large confinement of diameter 30Do. The confinement is chosen
large enough to simulate a free jet, and simulations with different confinement geometries show
that the wall of the confinement has no influence on the velocity, pressure and turbulence profiles
near the nozzle [5]. The outlet is chosen to be at 32.5Do. To prevent inflow through the outlet, it
is partially blocked by a wall of diameter 25Do at x=22.5Do, followed by a channel of length
10Do. This is mainly done for increasing the computational speed. Various simulations on the
blocking ratio also show that it has no influence on the jet in the region of interest. The geometry
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Figure 4. Schematic view of the geometry and computational domain. The thick
solid lines represent wall boundaries.
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is oriented in such a way that the x-axis of a cylindrical coordinate system (x,r,�) is coincident
with the central axis of the geometry and the origin is located at the exit of the annular channel;
hence, the stepwise expansion is situated at x=0. For the calculations, air is chosen as the working
fluid with a density �=1.1708kg/m3 and a kinematic viscosity 	=1.85×10−5m2/s. The fluid is
chosen to be incompressible and Newtonian.

Previous simulations by the authors have shown that the influence of the inlet velocity profile
on the prediction of the transitional swirl number from an OJF-HS to a CoJF is very small [5].
Therefore, the axial velocity profile at the inlet is chosen to be constant at U0=6.48m/s. The
Reynolds number based on U0 and the hydraulic diameter of the annular channel, Do−Di, is
10 650. The tangential velocity profile at the inlet is a solid body rotation, W =�r , and the value
of � is chosen in such a way that the inlet swirl number S=0.557. The Reynolds stresses at the
inlet are computed based on k using the assumption of isotropy of turbulence, u2=v2=w2= 2

3k
and uv=uw=vw=0. The value of k is determined based on a turbulence intensity of 10%,
experimentally measured [3]. At the outlet, Neumann boundary conditions for the variables are
applied together with the radial pressure equilibrium, expressed as �p/�r =�W 2/r . A symmetric
boundary condition is applied at the central axis. At the walls, a no-slip boundary condition is
applied. The mesh near the wall is fine enough to resolve the velocity profile. The first grid point
in the normal direction to the wall is well inside the viscous sub-layer resulting in a maximum
y+ of 3. The values of the Reynolds stresses at the wall are computed based on the skin friction
velocity u
 =√


w/�, where 
w is the wall shear stress.

2.4. Discretization schemes

Equations (2) and (3) together with the turbulence equations are solved using the finite-volume-
based solver Fluent 6.2 [9]. The spatial derivatives of the momentum and turbulence equa-
tions are discretized using the third-order MUSCL differential scheme, which improves the
spatial accuracy by reducing numerical diffusion compared with second-order upwind schemes
[10]. The grid consists of 60 600 cells. A detailed view of the grid inside the stepped-conical
nozzle is shown in Figure 5. A grid study with a finer grid of 242 400 cells showed that the
maximum relative difference in variables between the coarse and the fine grids is within 0.5% [5].

Figure 5. Detailed view of the grid inside the stepped-conical nozzle as schematically shown in Figure 1.
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The SIMPLEC algorithm is used for pressure–velocity coupling [11] and the pressure interpolation
scheme is the PRESTO!-scheme [12]. The time derivative is discretized by a second-order implicit
time-discretization scheme in such a way that the variable at timestep n+1, �n+1, is given by

�n+1= 4
3�

n− 1
3�

n−1+ 2
3�t F(�n+1) (8)

with F(�) being the spatial discretization of � in Equation (3). This scheme is unconditionally
stable with respect to the value of the timestep �t . However, to obtain a high temporal resolution,
the value of �t is chosen to obtain a mean cell Courant number of 3. In this manner, the flow
pattern change is divided into approximately 10 000 timesteps, which is a sufficiently high temporal
resolution. The convergence criterion is based on the sum of the absolute values of the mass flow
residual in each cell. The solution in each timestep has converged when this sum is smaller than
5×10−10 kg/s.

2.5. Solution strategy

The objective of this paper is to study the underlying physics of the drastic and irreversible change
in flow pattern from an OJF-HS to a CoJF caused by a small decrease in the inlet swirl. The initial
condition of the transient simulation is the steady-state solution of the OJF-HS (flow pattern A in
Figure 2) at S=0.58 in the decrease in swirl. The inlet velocity profiles of the CoJF at S=0.557
(flow pattern B) are applied. In this manner, the velocity field is not in equilibrium with the initial
conditions and the solution strategy simulates the transient response of the steady-state OJF-HS to
a sudden decrease in the inlet swirl from S=0.58 to 0.557. As shown later, the underlying physics
in the flow pattern change is independent of the quickness of change in swirl and any kind of
decrease in swirl from S=0.58 to 0.557 could be used. However, for simplicity a step change is
chosen. The simulations end when the steady-state CoJF is reached.

3. RESULTS AND DISCUSSION

For an incompressible axisymmetric flow, the normalized streamfunction � can be calculated from
the axial velocity profile as

�(x,r)=
(∫ r

0
Ur dr

)/(∫ D/2

0
Ur dr

)
(9)

The projection of the velocity vector in a meridional (xr) plane is directed along the ‘stream-
surfaces’ �(x,r)=const., and the fluid particle paths are lines, spirals in the case of swirling
flows, on these surfaces. Owing to the normalization, the ‘stream-surfaces’ |�|=0 and 1 are jet
boundaries and the ‘stream-surfaces’ |�|<0 and |�|>1 are recirculation zones. More details on
the description of the streamfunction in axisymmetric swirling flows can be found in [13]. Let us
now define two axisymmetric control volumes inside the flow as shown in Figure 6. The first one,
called CV1, is the part of the jet inside the nozzle. The outlet of the annular channel is the inlet
boundary of CV1, the boundaries on the side are �0 and �1 and the outlet boundary is the part
between �0 and �1 at the nozzle outlet. The second control volume, called CV2, is a part of the
jet outside the nozzle. The inlet of CV2 is the outlet of CV1 and the side boundaries are �0 and
�1. The outlet of CV2 is perpendicular to �0 and �1 and is situated at a length 2Do downstream
of its inlet.
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Figure 6. Steady-state OJF-HS: view of the two control volumes CV1 (inside the nozzle)
and CV2 (outside the nozzle). The arrows represent the projected velocity vectors on a

(xr )-plane inside both control volumes.

Equation (3) expresses the equilibrium of forces in a fixed point inside the flow. However,
Equation (3) can also be integrated across a control volume CV, which can be CV1 or CV2. The
expression thus obtained is called the integral form of the equations of motion. Note that the
boundaries �0 and �1 are not necessarily fixed in space and that the control volumes can move
and deform along with a change in flow. The velocities of a boundary are Ub in the axial direction
and Vb in the radial direction. Note that for a solid boundary Ub=Vb=0. The volume of CV
is given by V =2�

∫ Lx
0

∫ �1
�0

r dr dx , where Lx is the axial length of CV. Applying the Reynolds
transport theorem to CV and taking into account the movement and deforming, the momentum
equations without the viscous terms are given by

d

dt

[∫ Lx

0

∫ �1

�0

�Ur dr dx

]
+
∫

�x

�U (U−Ub)r dr+
∫

�r

�U (V −Vb)r dx

=
∫ Lx

0

∫ �1

�0

SUr dr dx (10)

d

dt

[∫ Lx

0

∫ �1

�0

�Vr dr dx

]
+
∫

�x

�V (U−Ub)r dr+
∫

�r

�V (V −Vb)r dx

=
∫ Lx

0

∫ �1

�0

SV r dr dx (11)

where �x represent the projected surfaces of CV with a normal in the axial direction and �r
represent with a normal in the radial direction. Consider now a frame of reference moving along
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with CV. The left and right boundaries of CV are streamlines; hence, no momentum enters through
these boundaries if CV is stationary. In the case of a moving CV, the first term of Equations (10)
and (11) is equal to the momentum flux caused by the relative velocity difference U−Ub or V −Vb
between boundary and fluid velocities of the moving and deforming CV. In other words, Equations
(10) and (11) can be simplified to∫

�x

�U 2r dr+
∫

�r

�UVr dx=
∫ Lx

0

∫ �1

�0

SUr dr dx (12)

∫
�x

�VUr dr+
∫

�r

�VVr dx=
∫ Lx

0

∫ �1

�0

SV r dr dx (13)

By applying Gauss’s theorem,
∫∫∫

V ∇ ·fdV =∫∫A f ·dA, where ∇ ·f=[� fx/�x,1/r�(r fr )/�r ] and
dA is the surface vector of the boundary of V , to the right-hand side of Equations (12) and (13),
taking into account the following relation:

�p
�r

= 1

r

�rp
�r

− p

r
(14)

one can obtain an expression for the integral form of the axial momentum equation as∫
�x

�U 2r dr+
∫

�r

�UVr dx︸ ︷︷ ︸
Ṁx

=−
∫

�
pr dr︸ ︷︷ ︸

Fp,x

−
∫

�
�u2r dr︸ ︷︷ ︸
Fuu

−
∫

�
�uvr dx︸ ︷︷ ︸
Fuv,x

(15)

with all the variables evaluated at the boundaries � of the control volume CV and the integration
done over every boundary of CV. On the left-hand side, Ṁx is the change in axial momentum
of CV. On the right-hand side, the first term is the pressure force acting on the boundaries of
CV, called Fp. The last two terms are the forces on CV due to the turbulence, Fuu and Fuv . The
expression for the radial momentum equation is in a similar manner given by∫

�x

�VUr dr+
∫

�r

�V 2r dx︸ ︷︷ ︸
Ṁr

= −
∫

�
pr dx+

∫ Lx

0

∫ �1

�0

pdr dx︸ ︷︷ ︸
Fp,r

+
∫ Lx

0

∫ �1

�0

�(W 2+w2)dr dx︸ ︷︷ ︸
Fc

−
∫

�
�v2r dx︸ ︷︷ ︸
Fvv

−
∫

�
�uvr dr︸ ︷︷ ︸
Fuv,r

(16)

In this expression, the left-hand side Ṁr is the change in radial momentum of CV. On the right-
hand side, an extra term Fc appears, which is the centrifugal body force due to the rotation of the
jet. The remaining terms are equivalent to those in Equation (15).

3.1. Steady-state OJF-HS

The forces on CV1 and CV2 for the steady-state OJF-HS, as defined in Equations (15) and (16),
are shown in Table I(a) and (b). The values are scaled with regard to the axial momentum at
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Table I. Strength of the different forces on CV1 and CV2 for the steady-state OJF-HS.

x-Direction (%) r -Direction (%) x-Direction (%) r -Direction (%)

(a) Forces on CV1
Ṁin −100 −12.24 Fp −22.43 26.55
Ṁout 46.89 58.37 Fc 0 30.96

FRey −29.45 −11.55
(b) Forces on CV2
Ṁin −46.89 −58.37 Fp +17.24 −31.5
Ṁout 23.52 5.9 Fc 0 14.66

FRey −39.46 −36.36

The values are scaled with the inlet momentum in the axial direction of CV1. FRey is the turbulent force due
to the Reynolds stresses.

the inlet of CV1. The momentum deficit is about 1.2% in the axial direction and about 1.4%
in the radial direction of the incoming momentum for CV1 and, respectively, 2.5 and 1.25% for
CV2. This deficit is caused by neglecting the viscous forces and by interpolation errors, since
the boundaries of the control volumes are not coincident with the cell centers. However, at each
timestep in the numerical calculation, the deficit in axial and radial momentum remains below the
values mentioned above.

As can be seen in Table I(a), the jet loses 53.11% of its axial momentum when it exits the
nozzle. This decay is more or less in equal amounts caused by the pressure forces and the Reynolds
stresses on the boundaries. The radial momentum at the outlet is more than 4.5 times larger than
the radial momentum at the inlet. This increase is mostly caused by the centrifugal force Fc and the
pressure force Fp on the boundaries. The Reynolds stresses are much smaller compared with those
two. As the jet exits the annular channel, a ‘corner recirculation zone’ (CRZ) is formed between
the sudden expansion and the nozzle divergent (Figure 6). The sub-pressure inside this CRZ is the
largest part of Fp and, as shown later, plays an important role in the transition as it keeps the jet
attached to the nozzle. Outside the nozzle (CV2) the Reynolds stresses are substantially higher than
inside the nozzle. In this region, the centrifugal force is also much smaller. However, as shown
later, the Reynolds stresses do not play an important role in the physics of the transition.

The tangential velocity and pressure field of the steady-state OJF-HS outside the nozzle are
shown in Figure 7 (solid black lines). The streamlines of the OJF-HS are shown as gray lines.
The solid gray lines represent jet streamlines and the dashed gray lines represent recirculation
and entrainment zones. In the flow field downstream of the nozzle, a pressure field is created to
balance the centrifugal forces, given by the simplified radial momentum equation

�p
�r

=�
W 2

r
(17)

Integrating the above equation starting at r =∞ results in a pressure along the central axis (r =0),
which is lower compared with the environmental pressure at r =∞ (Figure 7(b)). This sub-
pressure at the central axis bends the OJF-HS streamlines towards the center further downstream.
As a consequence, a large central torroidal vortex (CTV) is created, whose center is situated at
x=2.26Do and r =1.44Do. For an inviscid flow, the angular momentum rW along a streamline
is constant. Hence, the rotating CTV induces a region of high tangential velocity near the axis
(between 2 and 3.5Do) where its streamlines reach their minimum radius. Because of the coupling
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Figure 7. Tangential velocity and pressure field of the steady-state OJF-HS at S=0.58. The stream-
lines are given as gray lines in the background: (a) dimensionless tangential velocity field W/U0 and

(b) dimensionless pressure field (P−P∞)/(0.5�U 2
0 ).

between pressure and tangential velocity (Equation (17)), this region of high tangential velocity at
low radius minimizes the pressure at the central axis at x/Do≈2.3.

3.2. Transition from an OJF-HS to a CoJF

The transition from an OJF-HS to a CoJF can be divided into three regimes. The first one is
called the ‘immediate response regime.’ In this regime (0�T�8), the jet responds to the sudden
step change in the inlet swirl. The dimensionless time T = tU0/Lc is defined in such a way that a
particle at the inlet with constant velocity U0 reaches the nozzle at T =1. The oscillations of the
variables in the flow field damp out in time and the transition enters the second regime, called the
‘quasi-static regime’ (8<T�167). In this regime, the changes and time derivatives of the variables
in the flow field are very slow compared with those in the response regime. The ‘quasi-static’
regime ends when the Coanda effect takes place at the nozzle outlet. The transition enters the last
regime for T>167, called the Coanda regime, and the flow field evolves towards the steady-state
CoJF at S=0.557.

3.2.1. Immediate response regime (0�T�8). The first regime in the simulation is the immediate
response regime. This regime covers the response of the jet flow to the sudden step change in the
inlet swirl. Figure 8 shows the time derivative of the volume-integrated axial U (dashed line) and
radial V (solid line) velocity inside CV1 as a function of T (first term in Equations (10) and (11)).
These terms correspond to the inertial forces on CV1 in the axial and radial directions for an
observer moving along with CV1. Both values shown are scaled with the inlet axial momentum at
T =0 (the steady-state OJF-HS). The movement of CV1 is only in the radial direction since the
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Figure 8. Time derivative of the volume-integrated value of � (inertial force for an observer
moving along with CV), scaled with the axial momentum of the steady-state OJF-HS at

the inlet. Solid line: �=V and dashed line: �=U .

first term in Equation (10) can be expressed as

d

dt

[∫ Lx

0

∫ �1

�0

�Ur dr dx

]
= d(

∫ Lx
0 ṁ0 dx)

2�dt
= d(ṁ0Lx )

2�dt
=0 (18)

where ṁ0 is the mass flow rate of the jet. The sudden change in the inlet swirl is convectively
transported towards CV1 and it is first noticeable at T =0.75, corresponding to a convective
velocity ofU ≈1.33U0, which is higher than the maximum axial velocity inside the annular channel
(1.19U0). The maximum inertial force on CV1 is approximately 10 times the axial momentum
flux at the inlet and dims out exponentially in time. The immediate response regime is of no
further interest as it is the response of the OJF-HS to the step change in the inlet swirl and the
physical effects responsible for the change in the flow pattern take place during the quasi-static
and Coanda regime. The duration of this regime (�T =8) is also much smaller compared with
that of the quasi-static regime (�T =159).

3.2.2. Quasi-static regime (8<T�167). In the quasi-static regime, the inertial forces are below
1.5% of the axial momentum at the inlet; hence, this regime is called quasi-static. The changes in
the flow field in the quasi-static regime take place outside the nozzle. In this region, the simple
radial equilibrium equation (Equation (17)) links the tangential velocity field with the pressure
field (both shown in Figure 7). What happens if the equilibrium between pressure and centrifugal
force in the steady-state OJF-HS is disturbed by a decrease in inlet swirl? Integrating Equation
(17) in the radial direction and differentiating in time result in

�p
�t

=
∫ r

∞
2�

W

r

�W
�t

dr (19)

The above equation states that a decrease in tangential velocity results in an increase in static
pressure. If the inlet swirl is decreased, the CTV will rotate less. Since rW is constant along a
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streamline of the CTV, the highest velocity gradients in time are situated near the high-velocity
region in Figure 7(a), as shown in Figure 9(a). As a consequence of Equation (19), the time
derivatives of pressure are the highest in this high-velocity region (high tangential velocity and
high time derivative at low radius) as can be seen by comparing Figure 9(a) with (b). This increase
in static pressure at the center in turn results in a smaller deflection of the streamlines further
downstream, e.g. the jet expands more radially. Since rW is constant along a streamline of the
jet, this increased radial expansion results in a smaller tangential velocity of the jet. This smaller
tangential velocity in turn increases the static pressure at the center and so on. This mechanism of
pressure–tangential velocity coupling enlarges the size of the CTV and moves its center radially
outward as can be seen in Figures 10(a)–(g). This figure shows the streamlines of the jet as a
function of T during the simulation. The path of the center of the CTV is given by the gray
line and its position is marked with an x . The pressure–tangential velocity coupling results in an
outward movement of the center in time due to the increased radial expansion of the jet. As the
Coanda effect takes place at the nozzle outlet, the vortex center is pulled down, followed by a
radial outward movement due to the ‘roll-down’ of the jet along the nozzle outlet wall (see the
following section).

Figure 11 shows the forces on CV2 as defined in Equations (15) and (16). The variables are
scaled with the axial momentum at the outlet of the annular channel at T =0. During the quasi-static
regime, the pressure–tangential velocity coupling reduces the magnitude of the pressure forces
on the boundaries of the jet by more than a third. The change in centrifugal force and Reynolds
stresses is small compared with the reduction in the magnitude of Fp. Although the force of the
Reynolds stresses on the boundaries is high, it does not play an important role in the transition
and the main driving mechanism is the pressure–tangential velocity coupling. The analysis of the
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Figure 9. Dimensionless time derivative of the tangential and pressure fields at T =43.2. The difference
between two neighboring contours is 0.1: (a) (�W/�t)/(�W/�t)|max and (b) (�P/�t)/(�P/�t)|max.
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Figure 10. Streamlines of the jet flow during the transition as a function of the dimensionless
time T = tU0/Lc. The center of the torroidal vortex is marked with an x and its path is shown
by a gray line: (a) T =0; (b) T =43.2; (c) T =64.8; (d) T =86.4; (e) T =108; (f) T =129.6;

(g) T =151.2; (h) T = 172.8; and (i) T =177.1.

pressure forces on CV1 shows that the pressure force of the CRZ is the highest contribution to Fp.
The magnitude of this force decreases with decreasing swirl (not shown here). The role of the
CRZ is important since it keeps the jet attached to the nozzle and if the dimensions of the sudden
expansion are too large, the jet will detach from the nozzle before the Coanda effect can take
place [4].
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Figure 12. Boundary �1 of the jet as a function of T . The starting streamline is at T =162 and the time
�T between two successive streamlines is 1.

3.2.3. Coanda regime (T>167). As described above, the jet will expand more radially in time due
to the decreasing pressure in the region of the CTV. During the quasi-static regime, the pressure
force on the outer boundary of the jet �1 remains more or less constant for T�140, followed
by a rapid increase. This jet boundary �1 at different times T near the transition to the Coanda
regime is shown in Figure 12. The time interval �T between two successive streamlines is 1. The
figure shows the shrinking of the region of entrainment between the jet boundary �1 and the wall
of the nozzle due to the increased radial expansion. This shrinking increases the velocity in the
entrainment zone between CV2 and the wall. According to the law of Bernoulli, this increased
velocity decreases the static pressure in the region of entrainment (not shown in the figure). This
decrease in pressure pulls the jet even more towards the wall and so on. This effect is known as the
Coanda effect and at T =167 the jet attaches to the wall. This attachment is the start of the Coanda
regime. In this regime the jet rolls down the wall in the outward radial direction and evolves
towards the steady-state CoJF. This Coanda effect is validated based on time-resolved stereo-PIV
measurements and the streamlines of the measured velocity profiles confirm the above-explained
physical mechanisms of the Coanda effect and the ‘roll-down’ of the jet along the nozzle wall
[14]. The simulation has thus revealed correctly the underlying physics.
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4. CONCLUDING REMARKS

In this paper a numerical simulation has been made of the flow pattern transition of an annular
swirling jet caused by a sudden change in the inlet swirl from S=0.58 to 0.557. The flow was
simulated using the URANS approach with an RSTM turbulence model. The equations of motion
are integrated across a control volume CV, consisting of the jet boundaries. The simulation has
shown that the transition can be divided into three regimes: the immediate response regime, the
quasi-static regime and the Coanda regime. During the immediate response regime, the flow is
dominated by large inertial forces, which can be as high as 10 times the axial momentum of the
jet at the inlet. These inertial forces dim out in time and the jet enters the second regime, the
quasi-static regime. In this regime the inertial forces are less than 1.5% of the incoming axial
momentum. An analysis of the forces on CV shows that the pressure–tangential velocity coupling
outside the nozzle results in an increased radial expansion of the jet. If the radial expansion is large
enough, the Coanda effect takes place at the nozzle outlet and the jet is pulled towards the outlet
wall of the nozzle. In this third and last regime, called the Coanda regime, the flow pattern evolves
towards the steady-state CoJF. These physical mechanisms are validated by time-resolved stereo-
PIV measurements and the streamlines of the measured velocity profiles confirm the numerical
simulation. The simulation has thus revealed correctly the underlying physics of the transition.
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